
Applescripting the 
Unscriptable:
Using the GUI 
Scripting Beta

Ted Stevko
Stevko Studios

O’Reilly Mac OS X Convention
October 27-30, 2003



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

Notes about this presentation

• This is about half-10.2.8, half-10.3, so forgive me 
if there’s any mistakes or issues; some of this 
changed between the beta and the release in 10.3.

• I dropped the final Applescript file into 
SubEthaEdit for perusal.

• Comments about my poor Applescript techniques 
are welcomed, encouraged, and hoped for; send 
them to me at my e-mail, ted@stevko.com

• If you’ve got questions, shout out.
• I’d like to thank Matt Neuburg for allowing me to 

borrow the name, and Rogue Amoeba for 
allowing me to use their program as an example.



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

Why? It’s a long story...

• This all started out because I listen to headphones 
all day

• Audio streams aren't always convenient or 
stoppable.

• To fix, I got Audio Hijack Pro... but I can’t run it 
on my Wintel machine at work.

• Audio Hijack Pro has no Applescript support 
• So I had to find another way to do this...



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• End users benefit from GUI scripting by being 
able to script those programs which don't have 
Applescript support

• Programmers who cannot build in Applescript 
support directly can support GUI scripting, and 
gain additional benefit from doing so.

• Goal is not to discourage building in Applescript 
support -- lots of discussion on Apple's 
Applescript user list about this.

GUI Scripting



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

Goals of this presentation

• To go through what’s been introduced in the GUI 
Scripting

• Touch on how GUI scripting works on the back 
end for Cocoa/Carbon programmers

• Show how to build a GUI script for a program 
that has no built-in Applescript

• Once these goals are met, I’ll show the script that 
let me achieve my goal of being able to ignore 
the world for days at a time.



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

What can you do with GUI scripting?

• Can access any standard GUI element's attributes 
and actions

• This currently includes all elements built into 
Cocoa & Carbon, as well as element in Java apps 
that use the Cocoa/Java bridge.

• Claims it works with Java, but I’m not finding 
that true for Swing apps. Haven’t tested AWT.



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

What can you do with GUI scripting?

• Actions include clicking radio & checkboxes, 
adding text to text areas, opening and selecting 
elements from menus, etc.

• Also includes key commands and x/y coordinate 
clicking (sort of)

• A full listing of all elements is available in the 
System Events dictionary; we'll cover the major 
ones.



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

How’s it work?

• Information on GUI Scripting from Apple
http://www.apple.com/applescript/GUI/

• Beta for 10.2 Released in December 2002, final 
1.0 in Panther

• The beta was a download consists of an update to 
the System Events program and a UI Element 
Inspector

• The final is included in Panther directly, with the 
UI Element Inspector a seperate download.

• Sample scripts are available at the above address 
for the 1.0 release only now (and there were 
changes). 

• Sample scripts in the scripts menu



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

But how do I script these elements, 
dammit?

• OK, now the obligatory “where can I find more” 
page is past, how do you script these things?

• It’s pretty simple. You tell the System Events 
application, to tell the application you want to 
script, to either get info about the GUI elements 
or tell it’s GUI elements to do an action. 

• This leaves us a few problems, though
– What are the basic GUI elements?
– How do I tell Applescript which GUI elements I want?
– What info can I get from the GUI element?
– What can I do to the GUI element?



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• The classes and commands for these are found in 
the System Events application

• System Events is a background app that allows 
you to system level things, like create clicks, 
attach scripts to folders, etc.  

• In the beta the classes were added to "System 
Events Suite" in the downloaded System Events

• Panther contains these updates with the standard 
install, this time inside of “Process Suite”

• Other than knowing that this is the application 
you select to find the GUI scripting dictionary, 
this can be nicely ignored.

Finding The Basic Applescript 
Classes and Commands



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• This is where the UI Element Inspector comes in. 
• You use this to find out about not only the 

application you want to script
• This application goes out and reads the 

accessability hierarchy -- not the object hierarchy 
-- and relates information about the element 
directly under your mouse

• Lessons for programmers: build your GUIs 
carefully & logically -- now your end users might 
be looking at these.

Finding Out Things About An 
Application You Want To Script



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• Program that allows 
you to roll over a GUI 
and "inspect" the 
elements of any GUI 
interface.

• Same program bundled 
with the Accessability 
API

• It’s the most confusing 
thing about Applescript 
GUI Scripting. 

• So, let's take a look at 
it!

What’s the UI Element Inspector?



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• If you look at this 
while you roll over 
things, you get three 
distinct areas

• The tree heirarchy of 
an element

• The attributes of an 
element

• The actions available 
to an element

Looking at the Inspector



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• This shows the tree you're going to have to 
walk down to access a GUI element

• So, in this case, you would need to reference 
the pop up button of the group of the scroll area 
of the window “Test Text” of application 
“Audio Hijack Pro”

• References can be made by either name or 
element number -- although UI Element 
Inspector doesn’t tell you what the number is

Tree Hierarchy



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• This is the proper name of the element as seen by 
Apple’s Accessability API.

• Apple introduced an Accessibility API to allow 
non-standard input devices to access applications

• Each element of the standard Cocoa and Carbon 
GUI API implements the accessibility API

• In Applescript, though, you will be calling things 
like “pop up button”, not “AXPopUpButton”. 
This particular tree list is to be used as more of a 
guide than an absolute. 

What the heck's "AXPopUpButton"?



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• Lots of attributes for every element, but not all 
available for getting

• Some attributes can be "set" -- ones with (W) in 
front of them

• Some attributes are
a pain to access,
like children. Will
not return a list
when called; you
have to build your 
own list.

• Actions show what
you can do to that
element

Attributes and Actions



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• Accessibility is built into the standard set of UI 
elements -- but custom UI elements need to 
implement the Accessibility API to be GUI 
scriptable.

• For Applescript, you don't need to know this; but 
if you're building an application, this is why a 
custom UI element would not have access.

• For Carbon/Cocoa builders, having your custom 
GUI elements implement the Accessability API’s 
GUI classes allows them to be accessed both by 
Applescript and by non-standard input devices

• Java developers seem to need to use the Cocoa/
Java bridge instead of Swing for GUIs.

Why can’t I script some elements?



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• Use the tree information to find where the UI 
element is

• Use the attributes to find out information about 
the UI element

• Use the actions to find out what actions you can 
perform.

• This gives you the information you need to script 
any specific UI element.

• But.. the UI Element inspector is a pain -- it was 
built for working with the Accessability API.

How do I use the UI Element 
Inspector?



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• Prefab UI Browser: http://www.prefab.com/
uibrowser/, $40

Prefab UI Browser



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• Easier to use to walk the tree: elements have clear 
Applescript names, and UI Browser gives number 
references, where UI Element Inspector does not

• Allows you to test setting attributes, clicking 
elements, doing keyboard commands, etc. 
without having to built test Applescripts

• Best of all, UI Browser builds Applescript 
statements for you, including clicking elements, 
getting and setting attributes, and building basic 
try blocks.

• If you’re doing GUI scripting, it’s near essential. 
Apple’s product isn’t built for doing 
Applescripting.

Prefab UI Browser



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• Because you're calling the System Events app, 
you tell the System Events application to tell an 
application process.

• This gets you access to it’s GUI elements. If you 
tell the application directly, it would be a 
reference to that program’s Applescript elements. 

Building The Script

tell "System Events"
    tell application process "Audio Hijack Pro"
       <!-- insert items here -->
    end tell
end tell



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• Since each of the items is in a vast tree, you just 
have to descend the tree.

• Either tell a series of items (set value of text field 
1 of row presetNum of table 1 of scrollArea 1 of 
"Preset List" to timerName) or..

• Use a series of tell statements --

Referencing elements

tell "System Events"
    tell application process "Audio Hijack Pro"
       tell window “Preset List”
           tell scroll area 1
               click button 1
           end tell
       end tell
    end tell
end tell



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• Getting attributes is as simple as “get <attribute> 
of <UI element>”; setting is “set, etc.”

• Note: Some items in the beta claimed to be 
modifiable, and are not: you will need to test. Not 
sure about Panther yet.

Getting and setting attributes

tell "System Events"
    tell application process "Audio Hijack Pro"
       tell window “Preset List”
           tell scroll area 1
              set theVar to get value of button 1 
              set value of button 1 to theVar
           end tell
       end tell
    end tell
end tell



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• Again, simple as can be: find the element and use 
"click"

• A button (or any other element) has to be enabled 
(enabled attribute is true) in order to click it, or 
perform any other action on it.

Buttons

tell "System Events"
    tell application process "Audio Hijack Pro"
       tell window “Preset List”
           tell scroll area 1
              click button 1
           end tell
       end tell
    end tell
end tell



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• Drop-down menus include both "pop up buttons" 
and "menu buttons" 

• You must click the button first to be able to reach 
the menu items.

• Once the button is clicked, the drop down menus 
then have access to their menu child element, 
which has an array of child menu items.  

Drop-down Menus

tell "System Events"
    tell application process "Audio Hijack Pro"
       tell window “Preset List”
          click pop up button 1
          pick menu item "MP3 VBR" of menu "
OtherViews" of pop up button 1 
       end tell
    end tell
end tell



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• Menus are basically containers for menu items; 
you select a menu, then select a menu item.

• Menu items have 3 actions: cancel, to skip 
selecting a menu item; click, which selects the 
item; and pick, which also selects the item

Menus & Menu Items

tell "System Events"
    tell application process "Audio Hijack Pro"
       tell window “Preset List”
          pick menu item "New Preset" of menu "File"             
       end tell
    end tell
end tell



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• Menu Bars are containers for menu bar items, 
which are containers for menus.

• To select something in a menu bar, you need to 
select the menu bar, select the menu bar item, 
select the menu, then select the menu item.

• This is new in Panther; the beta had menu bar, 
menu, menu item.

Menu Bars & Menu Bar Items

tell "System Events"
    tell application process "Audio Hijack Pro"
       tell window “Preset List”
          pick menu item "New Preset" of menu 1 of menu 
bar item “File” of menu bar 1             
       end tell
    end tell
end tell



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• Text fields actually are pretty simple; set the 
attribute "value" for the text field.

• Static text fields, natch, can't be changed; but 
they occur often inside of a lot of programs as 
labels.

Text Fields

tell "System Events"
    tell application process "Audio Hijack Pro"
       tell window “Preset List”
          set value of text field 1 to “Say hi, Bob!”
       end tell
    end tell
end tell



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• All elements have an "enabled" value; if it's not 
enabled, you can't actually change or act on it. 

• Disabled elements still claim to be clickable, but 
are not -- you need to enable them first. 

Enabled and Disabled Elements

tell "System Events"
    tell application process "Audio Hijack Pro"
       tell window “Preset List”
          if enabled of button 2 is 0 then
             click button 1
          end if
          click button 2 
       end tell
    end tell
end tell



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• Because we’re using System Events to access this 
program, we can't just use an "open" statement. 
We have to use the UI to open files.

• This combines a couple of things: clicking on an 
element, switching windows, entering a text field, 
and then click select.

Open Dialogs



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• Open dialog boxes contain a text field which you 
can set to a file or folder location like "/Users/
default/Desktop".  Just don't forget to click on the 
"select" button afterwards.

Open Dialogs

tell "System Events"
   tell application process "Audio Hijack Pro"

click menu item "Select Target..." of menu "
Control" of menu bar 1

keystroke "/" using control down
tell sheet 1 of window "Open"
set value of text field 1 to "/users/stevko/

Desktop/"
     click button 1

end tell
click button "Open" of window "Open"

   end tell
end tell



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• Incrementors are a particular type of UI element 
which moves values up and down

• Consist both of sliders and up/down buttons
• These can use the actions "increment" and 

"decriment", which do exactly like they say.
• They also can contain child buttons, which can be 

used in a click statement

Incrementors

tell "System Events"
    tell application process "Audio Hijack Pro"
       tell window “Preset List”
          increment incrementor 1
      end tell
    end tell
end tell



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• You can also "click" at a location on the screen.
• Call click using a list consisting of an {x,y} 

coordinate point
• Does not work for elements which aren't 

extensions of the Accessability API
• Finding the point where to click is a pain, 

because it’s based on the whole screen, not the 
window.

Clicking Elements By Location

tell "System Events"
    tell application process "Audio Hijack Pro"
       tell window “Preset List”
          click at {233, 533}
       end tell
    end tell
end tell



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• Finally, you can send keystrokes as well, along 
with any combination of the command keys 
(command, control, option, shift, or caps lock)

• Keystrokes can specify any key except function 
keys, command keys and the escape key.

Keystrokes

tell "System Events"
    tell application process "Audio Hijack Pro"
       tell window “Preset List”
          keystroke "a" with {command down, 
option down}
      end tell
    end tell
end tell



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• Despite all of this, some elements aren't 
scriptable -- anything that doesn't extend the 
Accessability API won't be accessable.

• Custom UI elements need to have this capability 
built in, by using the Accessability API. Often it's 
not done, and the Accessability API has only 
been available for around a year to a year and a 
half.

Unscriptable Elements



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

Now, To The Actual Script....



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• Wrap this script in a perl script, save it off and 
run it that way, but that's for another time.

• Set up any DSPs I choose beforehand, and 
duplicate a preset instead of creating a new 
preset. Added benefit: I wouldn't have to select 
the channel, it could be pre-set-up as well.

• Create this as a CGI, set up a web server, and go 
to town.

Additional Things To Do



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• Can’t register a click at a particular location!
• Scripts will be very specific to a particular 

program, and require a lot of searching through a 
program.

• Not all of the elements & attributes are 
accessable, like being able to access the array of 
children, or sometimes simple things like an 
element’s value

Downsides Of GUI Scripting



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• It gives applications that have no other APIs or 
scripting languages a way to be scripted. 

• Encourages application developers to use the 
Accessability API, a good thing all around

• Encourages good UI development in a logical 
structure

• Encourages use of standard UI elements 
whenever possible

Positive Benefits of GUI Scripting



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

• Obviously, more UI elements and simpler access 
for common elements

• Support for double-click and click and drag
• A more readable UI Element Inspector
• Extending the API so that a click anywhere on 

the application has the same effect as a mouse 
click. Hard, but worthwhile.

Future Developments?



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

Questions, Comments, Insults?



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

The Final Applescript
-- An example script using the GUI Scripting beta software

-- First, set some standard variables like name and time and channel
-- This also helps, so that you don't have to set these multiple times in the script
-- when you're editing it at the command line.

property timerName : "Test Timer"
-- start time is the hour over the 24 hour day.
property startTime : 12
-- recordingTime is in minutes
property recordingTime : "45"
property channel : "kwmu.asf"
property bitrate : "64 Kbps"
property days : {1, 2, 3, 5, 6, 7}

tell application "Audio Hijack Pro" to activate
-- may not need to activate applicaton

tell application "System Events"
tell application process "Audio Hijack Pro"

-- first, we need to open the list of recordings and the recording times,
-- which is called the "Presets List". 

-- To do this, we'll use keystroke. The keystroke for this is command-1
-- it doesn't close the window if you hit it while it's open

keystroke 1 using command down

-- if you want to, you can click a menu item like the following line:
-- click menu item "Show Presets" of menu "Window" of menu bar 1

-- next, we need to create a new preset
click button "New" of tool bar 1 of window "Presets List"

-- I'm renaming the new item from "untitled preset" to the timer name
tell window "Presets List"

tell table 1 of scroll area 1
set presetNum to get count of rows
if presetNum is greater than 0 then

set value of text field 1 of row presetNum to timerName
set selected of row presetNum to true

else
error "Something went wrong when I added an preset. Stopping script"

end if
end tell
click button "Open" of tool bar 1

end tell



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

The Final Applescript cont’d
tell window timerName

-- open all of the needed areas first
if not (exists (button "Mute" of scroll area 1)) then

click button "Control" of scroll area 1
end if
if not (exists (group 4 of scroll area 1)) then

click button "Recording" of scroll area 1
end if
if not (exists (checkbox "Timer Enabled" of scroll area 1)) then

click button "Timer" of scroll area 1
end if

end tell

-- make the selections for control
click menu item "Select Target..." of menu "Control" of menu bar 1
keystroke "/" using control down
set filePath to "/users/stevko/Desktop/" & channel

tell sheet 1 of window "Open"
set value of text field 1 to filePath
click button 1

end tell
click button "Open" of window "Open"

tell window timerName
-- make selections for recording
-- change type
tell pop up button 1 of group 1 of scroll area 1

click
click menu item "MP3" of menu 1

end tell
delay 1
-- change stereo/mono
tell pop up button 2 of group 1 of scroll area 1

click
click menu item "Stereo" of menu 1

end tell
delay 1
-- change bitrate
tell pop up button 3 of group 1 of scroll area 1

click
pick menu item bitrate of menu 1

end tell
delay 1



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

The Final Applescript cont’d
tell window timerName

-- open all of the needed areas first
if not (exists (button "Mute" of scroll area 1)) then

click button "Control" of scroll area 1
end if
if not (exists (group 4 of scroll area 1)) then

click button "Recording" of scroll area 1
end if
if not (exists (checkbox "Timer Enabled" of scroll area 1)) then

click button "Timer" of scroll area 1
end if

end tell

-- make the selections for control
click menu item "Select Target..." of menu "Control" of menu bar 1
keystroke "/" using control down
set filePath to "/users/stevko/Desktop/" & channel

tell sheet 1 of window "Open"
set value of text field 1 to filePath
click button 1

end tell
click button "Open" of window "Open"

tell window timerName
-- make selections for recording
-- change type
tell pop up button 1 of group 1 of scroll area 1

click
click menu item "MP3" of menu 1

end tell
delay 1
-- change stereo/mono
tell pop up button 2 of group 1 of scroll area 1

click
click menu item "Stereo" of menu 1

end tell
delay 1
-- change bitrate
tell pop up button 3 of group 1 of scroll area 1

click
pick menu item bitrate of menu 1

end tell
delay 1



 

Applescripting the Unscriptable -- Ted Stevko, Stevko Studios

The Final Applescript cont’d
-- set recording value to minutes
tell pop up button 1 of group 4 of scroll area 1

click
pick menu item "Minutes" of menu 1

end tell
delay 1
-- set recording time
tell text field 1 of group 4 of scroll area 1

set value to recordingTime
end tell

-- make selections for timer

-- first, select timer enabled.
if (value of checkbox "Timer Enabled" of scroll area 1 is equal to 0) then

click checkbox "Timer Enabled" of scroll area 1
end if

if (value of checkbox "Record" of group 6 of scroll area 1 is equal to 0) then
click checkbox "Record" of group 6 of scroll area 1

end if

if (value of checkbox "Quit Target" of group 6 of scroll area 1 is equal to 0) then
click checkbox "Quit Target" of group 6 of scroll area 1

end if

-- setting array of days
set daysLength to length of days
repeat with counter from 1 to daysLength

set thisDay to item counter of days as number
click button thisDay of list 1 of group 5 of scroll area 1

end repeat

-- getting end time
set endTime to startTime + (recordingTime div 60)
if (recordingTime mod 60 > 0) then

set endTime to endTime + 1
end if

-- setting start time
repeat startTime times

increment incrementor 2 of group 5 of scroll area 1
end repeat

-- setting end time
repeat endTime times

increment incrementor 1 of group 5 of scroll area 1
end repeat

end tell

end tell
end tell




